74.18.63 problem 69

Internal problem ID [16620]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Chapter 4 review exercises, page 219
Problem number : 69
Date solved : Tuesday, January 28, 2025 at 09:12:58 AM
CAS classification : [_Jacobi]

\begin{align*} x \left (1-x \right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+10 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.052 (sec). Leaf size: 44

Order:=6; 
dsolve(x*(1-x)*diff(y(x),x$2)+(1+2*x)*diff(y(x),x)+10*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (\ln \left (x \right ) c_{2} +c_{1} \right ) \left (1-10 x +30 x^{2}-40 x^{3}+25 x^{4}-6 x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (17 x -\frac {157}{2} x^{2}+\frac {404}{3} x^{3}-\frac {625}{6} x^{4}+\frac {162}{5} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_{2} \]

Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 95

AsymptoticDSolveValue[x*(1-x)*D[y[x],{x,2}]+(1+2*x)*D[y[x],x]+10*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (-6 x^5+25 x^4-40 x^3+30 x^2-10 x+1\right )+c_2 \left (\frac {162 x^5}{5}-\frac {625 x^4}{6}+\frac {404 x^3}{3}-\frac {157 x^2}{2}+\left (-6 x^5+25 x^4-40 x^3+30 x^2-10 x+1\right ) \log (x)+17 x\right ) \]