74.12.21 problem 21

Internal problem ID [16249]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.4, page 163
Problem number : 21
Date solved : Thursday, March 13, 2025 at 08:07:16 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 t}}{t^{2}} \end{align*}

Maple. Time used: 0.007 (sec). Leaf size: 19
ode:=diff(diff(y(t),t),t)-4*diff(y(t),t)+4*y(t) = 1/t^2*exp(2*t); 
dsolve(ode,y(t), singsol=all);
 
\[ y = {\mathrm e}^{2 t} \left (-1+c_{1} t -\ln \left (t \right )+c_{2} \right ) \]
Mathematica. Time used: 0.022 (sec). Leaf size: 23
ode=D[y[t],{t,2}]-4*D[y[t],t]+4*y[t]==1/t^2*Exp[2*t]; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to e^{2 t} (-\log (t)+c_2 t-1+c_1) \]
Sympy. Time used: 0.257 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(4*y(t) - 4*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - exp(2*t)/t**2,0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (C_{1} + C_{2} t - \log {\left (t \right )}\right ) e^{2 t} \]