Internal
problem
ID
[16274]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.4,
page
163
Problem
number
:
46
Date
solved
:
Thursday, March 13, 2025 at 08:09:18 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(t),t),t)+4*diff(y(t),t)+3*y(t) = 65*cos(2*t); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]+4*D[y[t],t]+3*y[t]==65*Cos[2*t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(3*y(t) - 65*cos(2*t) + 4*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)