Internal
problem
ID
[16278]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.4,
page
163
Problem
number
:
58
(a)
Date
solved
:
Thursday, March 13, 2025 at 08:09:30 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=4*diff(diff(y(t),t),t)+4*diff(y(t),t)+y(t) = exp(-1/2*t); ic:=y(0) = a, D(y)(0) = b; dsolve([ode,ic],y(t), singsol=all);
ode=4*D[y[t],{t,2}]+4*D[y[t],t]+y[t]==Exp[-t/2]; ic={y[0]==a,Derivative[1][y][0] ==b}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(y(t) + 4*Derivative(y(t), t) + 4*Derivative(y(t), (t, 2)) - exp(-t/2),0) ics = {y(0): a, Subs(Derivative(y(t), t), t, 0): b} dsolve(ode,func=y(t),ics=ics)