75.1.5 problem 6

Internal problem ID [16668]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 1. Basic concepts and definitions. Exercises page 18
Problem number : 6
Date solved : Tuesday, January 28, 2025 at 09:16:47 AM
CAS classification : [[_1st_order, _with_linear_symmetries], _dAlembert]

\begin{align*} y^{\prime }&=\sqrt {x^{2}-y}-x \end{align*}

Solution by Maple

Time used: 0.010 (sec). Leaf size: 171

dsolve(diff(y(x),x)=sqrt(x^2-y(x))-x,y(x), singsol=all)
 
\[ \frac {250 \left (x^{2}-y\right )^{{3}/{2}} \left (x^{2}+4 y\right ) \left (x^{6} c_{1} y^{2}+\frac {12 x^{4} c_{1} y^{3}}{5}+\frac {48 x^{2} c_{1} y^{4}}{25}+\frac {64 c_{1} y^{5}}{125}-\frac {1}{125}\right )-250 x \left (x^{4}+\frac {5 x^{2} y}{2}+10 y^{2}\right ) \left (x^{6} c_{1} y^{2}+\frac {12 x^{4} c_{1} y^{3}}{5}+\frac {48 x^{2} c_{1} y^{4}}{25}+\frac {64 c_{1} y^{5}}{125}+\frac {1}{125}\right )}{\left (5 x^{2}+4 y\right )^{3} y^{2} \left (2 \sqrt {x^{2}-y}+3 x \right )^{3} \left (-\sqrt {x^{2}-y}+x \right )^{2}} = 0 \]

Solution by Mathematica

Time used: 4.635 (sec). Leaf size: 416

DSolve[D[y[x],x]==Sqrt[x^2-y[x]]-x,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {Root}\left [64 \text {$\#$1}^5+240 \text {$\#$1}^4 x^2+300 \text {$\#$1}^3 x^4+\text {$\#$1}^2 \left (125 x^6-40 e^{5 c_1} x\right )-10 \text {$\#$1} e^{5 c_1} x^3-4 e^{5 c_1} x^5+e^{10 c_1}\&,1\right ] \\ y(x)\to \text {Root}\left [64 \text {$\#$1}^5+240 \text {$\#$1}^4 x^2+300 \text {$\#$1}^3 x^4+\text {$\#$1}^2 \left (125 x^6-40 e^{5 c_1} x\right )-10 \text {$\#$1} e^{5 c_1} x^3-4 e^{5 c_1} x^5+e^{10 c_1}\&,2\right ] \\ y(x)\to \text {Root}\left [64 \text {$\#$1}^5+240 \text {$\#$1}^4 x^2+300 \text {$\#$1}^3 x^4+\text {$\#$1}^2 \left (125 x^6-40 e^{5 c_1} x\right )-10 \text {$\#$1} e^{5 c_1} x^3-4 e^{5 c_1} x^5+e^{10 c_1}\&,3\right ] \\ y(x)\to \text {Root}\left [64 \text {$\#$1}^5+240 \text {$\#$1}^4 x^2+300 \text {$\#$1}^3 x^4+\text {$\#$1}^2 \left (125 x^6-40 e^{5 c_1} x\right )-10 \text {$\#$1} e^{5 c_1} x^3-4 e^{5 c_1} x^5+e^{10 c_1}\&,4\right ] \\ y(x)\to \text {Root}\left [64 \text {$\#$1}^5+240 \text {$\#$1}^4 x^2+300 \text {$\#$1}^3 x^4+\text {$\#$1}^2 \left (125 x^6-40 e^{5 c_1} x\right )-10 \text {$\#$1} e^{5 c_1} x^3-4 e^{5 c_1} x^5+e^{10 c_1}\&,5\right ] \\ y(x)\to 0 \\ \end{align*}