74.13.7 problem 24

Internal problem ID [16294]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.5, page 175
Problem number : 24
Date solved : Thursday, March 13, 2025 at 08:10:06 AM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} 6 y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 23
ode:=6*diff(diff(diff(y(t),t),t),t)-5*diff(diff(y(t),t),t)-2*diff(y(t),t)+y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \left (c_{3} {\mathrm e}^{\frac {3 t}{2}}+c_{1} {\mathrm e}^{\frac {5 t}{6}}+c_{2} \right ) {\mathrm e}^{-\frac {t}{2}} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 32
ode=6*D[ y[t],{t,3}]-5*D[y[t],{t,2}]-2*D[y[t],t]+y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to c_1 e^{t/3}+c_2 e^{-t/2}+c_3 e^t \]
Sympy. Time used: 0.167 (sec). Leaf size: 20
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(y(t) - 2*Derivative(y(t), t) - 5*Derivative(y(t), (t, 2)) + 6*Derivative(y(t), (t, 3)),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} e^{- \frac {t}{2}} + C_{2} e^{\frac {t}{3}} + C_{3} e^{t} \]