Internal
problem
ID
[16315]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.5,
page
175
Problem
number
:
45
Date
solved
:
Thursday, March 13, 2025 at 08:10:20 AM
CAS
classification
:
[[_high_order, _missing_x]]
With initial conditions
ode:=diff(diff(diff(diff(y(t),t),t),t),t)-5*diff(diff(y(t),t),t)+4*y(t) = 0; ic:=y(0) = -1, D(y)(0) = 3, (D@@2)(y)(0) = -7, (D@@3)(y)(0) = 15; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],{t,4}]-5*D[y[t],{t,2}]+4*y[t]==0; ic={y[0]==-1,Derivative[1][y][0] ==3,Derivative[2][y][0] ==-7,Derivative[3][y][0]==15}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(4*y(t) - 5*Derivative(y(t), (t, 2)) + Derivative(y(t), (t, 4)),0) ics = {y(0): -1, Subs(Derivative(y(t), t), t, 0): 3, Subs(Derivative(y(t), (t, 2)), t, 0): -7, Subs(Derivative(y(t), (t, 3)), t, 0): 15} dsolve(ode,func=y(t),ics=ics)