74.13.28 problem 45

Internal problem ID [16315]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.5, page 175
Problem number : 45
Date solved : Thursday, March 13, 2025 at 08:10:20 AM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=-1\\ y^{\prime }\left (0\right )&=3\\ y^{\prime \prime }\left (0\right )&=-7\\ y^{\prime \prime \prime }\left (0\right )&=15 \end{align*}

Maple. Time used: 0.020 (sec). Leaf size: 15
ode:=diff(diff(diff(diff(y(t),t),t),t),t)-5*diff(diff(y(t),t),t)+4*y(t) = 0; 
ic:=y(0) = -1, D(y)(0) = 3, (D@@2)(y)(0) = -7, (D@@3)(y)(0) = 15; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = {\mathrm e}^{-t}-2 \,{\mathrm e}^{-2 t} \]
Mathematica. Time used: 0.004 (sec). Leaf size: 16
ode=D[y[t],{t,4}]-5*D[y[t],{t,2}]+4*y[t]==0; 
ic={y[0]==-1,Derivative[1][y][0] ==3,Derivative[2][y][0] ==-7,Derivative[3][y][0]==15}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to e^{-2 t} \left (e^t-2\right ) \]
Sympy. Time used: 0.139 (sec). Leaf size: 14
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(4*y(t) - 5*Derivative(y(t), (t, 2)) + Derivative(y(t), (t, 4)),0) 
ics = {y(0): -1, Subs(Derivative(y(t), t), t, 0): 3, Subs(Derivative(y(t), (t, 2)), t, 0): -7, Subs(Derivative(y(t), (t, 3)), t, 0): 15} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = e^{- t} - 2 e^{- 2 t} \]