74.15.13 problem 13

Internal problem ID [16373]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.7, page 195
Problem number : 13
Date solved : Thursday, March 13, 2025 at 08:11:43 AM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} x^{3} y^{\prime \prime \prime }+22 x^{2} y^{\prime \prime }+124 x y^{\prime }+140 y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 20
ode:=x^3*diff(diff(diff(y(x),x),x),x)+22*x^2*diff(diff(y(x),x),x)+124*x*diff(y(x),x)+140*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_{2} x^{8}+c_{1} x^{3}+c_{3}}{x^{10}} \]
Mathematica. Time used: 0.005 (sec). Leaf size: 24
ode=x^3*D[y[x],{x,3}]+22*x^2*D[y[x],{x,2}]+124*x*D[y[x],x]+140*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_3 x^8+c_2 x^3+c_1}{x^{10}} \]
Sympy. Time used: 0.242 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), (x, 3)) + 22*x**2*Derivative(y(x), (x, 2)) + 124*x*Derivative(y(x), x) + 140*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} + \frac {C_{2}}{x^{8}} + \frac {C_{3}}{x^{5}}}{x^{2}} \]