75.6.11 problem 135

Internal problem ID [16767]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54
Problem number : 135
Date solved : Tuesday, January 28, 2025 at 09:21:52 AM
CAS classification : [[_1st_order, _with_linear_symmetries]]

\begin{align*} y^{\prime }&=\frac {y}{2 y \ln \left (y\right )+y-x} \end{align*}

Solution by Maple

Time used: 0.207 (sec). Leaf size: 19

dsolve(diff(y(x),x)=y(x)/(2*y(x)*ln(y(x))+y(x)-x),y(x), singsol=all)
 
\[ y = {\mathrm e}^{\operatorname {RootOf}\left (\textit {\_Z} \,{\mathrm e}^{2 \textit {\_Z}}-x \,{\mathrm e}^{\textit {\_Z}}+c_{1} \right )} \]

Solution by Mathematica

Time used: 0.163 (sec). Leaf size: 19

DSolve[D[y[x],x]==y[x]/(2*y[x]*Log[y[x]]+y[x]-x),y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [x=y(x) \log (y(x))+\frac {c_1}{y(x)},y(x)\right ] \]