74.15.34 problem 34

Internal problem ID [16394]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.7, page 195
Problem number : 34
Date solved : Thursday, March 13, 2025 at 08:12:24 AM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+2 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0\\ y^{\prime }\left (1\right )&=2 \end{align*}

Maple. Time used: 0.049 (sec). Leaf size: 15
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+2*y(x) = 0; 
ic:=y(1) = 0, D(y)(1) = 2; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \sqrt {2}\, \sin \left (\sqrt {2}\, \ln \left (x \right )\right ) \]
Mathematica. Time used: 0.024 (sec). Leaf size: 20
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0; 
ic={y[1]==0,Derivative[1][y][1]==2}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \sqrt {2} \sin \left (\sqrt {2} \log (x)\right ) \]
Sympy. Time used: 0.188 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + 2*y(x),0) 
ics = {y(1): 0, Subs(Derivative(y(x), x), x, 1): 2} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \sqrt {2} \sin {\left (\sqrt {2} \log {\left (x \right )} \right )} \]