9.8.23 problem problem 23

Internal problem ID [1088]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number : problem 23
Date solved : Monday, January 27, 2025 at 04:33:09 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+\left (1+x \right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 54

Order:=6; 
dsolve(diff(y(x),x$2)+(1+x)*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{2} x^{2}-\frac {1}{6} x^{3}+\frac {1}{24} x^{4}+\frac {1}{30} x^{5}\right ) y \left (0\right )+\left (x -\frac {1}{6} x^{3}-\frac {1}{12} x^{4}+\frac {1}{120} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 63

AsymptoticDSolveValue[D[y[x],{x,2}]+(1+x)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {x^5}{120}-\frac {x^4}{12}-\frac {x^3}{6}+x\right )+c_1 \left (\frac {x^5}{30}+\frac {x^4}{24}-\frac {x^3}{6}-\frac {x^2}{2}+1\right ) \]