Internal
problem
ID
[16412]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.7,
page
195
Problem
number
:
53
(e)
Date
solved
:
Thursday, March 13, 2025 at 08:13:01 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
With initial conditions
ode:=(x^2+1)^2*diff(diff(y(x),x),x)+2*x*(x^2+1)*diff(y(x),x)+4*y(x) = 0; ic:=y(0) = 0, D(y)(0) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=(1+x^2)^2*D[y[x],{x,2}]+2*x*(1+x^2)*D[y[x],x]+4*y[x]==0; ic={y[0]==0,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*(x**2 + 1)*Derivative(y(x), x) + (x**2 + 1)**2*Derivative(y(x), (x, 2)) + 4*y(x),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics)
False