75.8.17 problem 215

Internal problem ID [16833]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 8. First order not solved for the derivative. Exercises page 67
Problem number : 215
Date solved : Tuesday, January 28, 2025 at 09:34:19 AM
CAS classification : [_quadrature]

\begin{align*} x \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}}&=a \end{align*}

Solution by Maple

Time used: 0.106 (sec). Leaf size: 229

dsolve(x*(1+diff(y(x),x)^2)^(3/2)=a,y(x), singsol=all)
 
\begin{align*} y &= \int \frac {\sqrt {\left (a \,x^{2}\right )^{{2}/{3}}-x^{2}}}{x}d x +c_{1} \\ y &= -\frac {\left (\int \frac {\sqrt {-2 i \sqrt {3}\, \left (a \,x^{2}\right )^{{2}/{3}}-2 \left (a \,x^{2}\right )^{{2}/{3}}-4 x^{2}}}{x}d x \right )}{2}+c_{1} \\ y &= \frac {\left (\int \frac {\sqrt {-2 i \sqrt {3}\, \left (a \,x^{2}\right )^{{2}/{3}}-2 \left (a \,x^{2}\right )^{{2}/{3}}-4 x^{2}}}{x}d x \right )}{2}+c_{1} \\ y &= -\int \frac {\sqrt {\left (a \,x^{2}\right )^{{2}/{3}}-x^{2}}}{x}d x +c_{1} \\ y &= -\frac {\sqrt {2}\, \left (\int \frac {\sqrt {i \sqrt {3}\, \left (a \,x^{2}\right )^{{2}/{3}}-\left (a \,x^{2}\right )^{{2}/{3}}-2 x^{2}}}{x}d x \right )}{2}+c_{1} \\ y &= \frac {\sqrt {2}\, \left (\int \frac {\sqrt {i \sqrt {3}\, \left (a \,x^{2}\right )^{{2}/{3}}-\left (a \,x^{2}\right )^{{2}/{3}}-2 x^{2}}}{x}d x \right )}{2}+c_{1} \\ \end{align*}

Solution by Mathematica

Time used: 0.343 (sec). Leaf size: 216

DSolve[x*(1+D[y[x],x]^2)^(3/2)==a,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -x \left (\frac {a^{2/3}}{x^{2/3}}-1\right )^{3/2}+c_1 \\ y(x)\to x \left (\frac {a^{2/3}}{x^{2/3}}-1\right )^{3/2}+c_1 \\ y(x)\to c_1-x \left (-1-\frac {i \left (\sqrt {3}-i\right ) a^{2/3}}{2 x^{2/3}}\right )^{3/2} \\ y(x)\to x \left (-1-\frac {i \left (\sqrt {3}-i\right ) a^{2/3}}{2 x^{2/3}}\right )^{3/2}+c_1 \\ y(x)\to c_1-x \left (-1+\frac {i \left (\sqrt {3}+i\right ) a^{2/3}}{2 x^{2/3}}\right )^{3/2} \\ y(x)\to x \left (-1+\frac {i \left (\sqrt {3}+i\right ) a^{2/3}}{2 x^{2/3}}\right )^{3/2}+c_1 \\ \end{align*}