75.9.3 problem 222

Internal problem ID [16840]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 8.3. The Lagrange and Clairaut equations. Exercises page 72
Problem number : 222
Date solved : Tuesday, January 28, 2025 at 09:34:34 AM
CAS classification : [_dAlembert]

\begin{align*} y&=2 x y^{\prime }+\sin \left (y^{\prime }\right ) \end{align*}

Solution by Maple

Time used: 0.973 (sec). Leaf size: 44

dsolve(y(x)=2*x*diff(y(x),x)+sin(diff(y(x),x)),y(x), singsol=all)
 
\begin{align*} y &= 0 \\ \left [x \left (\textit {\_T} \right ) &= \frac {-\cos \left (\textit {\_T} \right )-\textit {\_T} \sin \left (\textit {\_T} \right )+c_{1}}{\textit {\_T}^{2}}, y \left (\textit {\_T} \right ) = \frac {-\textit {\_T} \sin \left (\textit {\_T} \right )-2 \cos \left (\textit {\_T} \right )+2 c_{1}}{\textit {\_T}}\right ] \\ \end{align*}

Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 44

DSolve[y[x]==2*x*D[y[x],x]+Sin[D[y[x],x]],y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\left \{x=-\frac {\int K[1] \cos (K[1]) \, dK[1]}{K[1]^2}+\frac {c_1}{K[1]^2},y(x)=2 x K[1]+\sin (K[1])\right \},\{y(x),K[1]\}\right ] \]