8.4.9 problem 9

Internal problem ID [712]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 1.5. Linear first order equations. Page 56
Problem number : 9
Date solved : Tuesday, March 04, 2025 at 11:33:45 AM
CAS classification : [_linear]

\begin{align*} -y+x y^{\prime }&=x \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=7 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 10
ode:=-y(x)+x*diff(y(x),x) = x; 
ic:=y(1) = 7; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \left (\ln \left (x \right )+7\right ) x \]
Mathematica. Time used: 0.023 (sec). Leaf size: 11
ode=-y[x]+x*D[y[x],x]== x; 
ic=y[1]==7; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x (\log (x)+7) \]
Sympy. Time used: 0.165 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - x - y(x),0) 
ics = {y(1): 7} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \left (\log {\left (x \right )} + 7\right ) \]