74.17.16 problem 16

Internal problem ID [16468]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.9, page 215
Problem number : 16
Date solved : Thursday, March 13, 2025 at 08:14:24 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x^{2} y^{\prime \prime }+3 x y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.051 (sec). Leaf size: 19
Order:=6; 
ode:=x^2*diff(diff(y(x),x),x)+3*x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {\ln \left (x \right ) c_{2} +c_{1}}{x}+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 18
ode=x^2*D[y[x],{x,2}]+3*x*D[y[x],x]+y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to \frac {c_1}{x}+\frac {c_2 \log (x)}{x} \]
Sympy. Time used: 0.686 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + 3*x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x} + O\left (x^{6}\right ) \]