75.11.3 problem 262

Internal problem ID [16854]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 11. Singular solutions of differential equations. Exercises page 92
Problem number : 262
Date solved : Tuesday, January 28, 2025 at 09:35:07 AM
CAS classification : [[_1st_order, _with_linear_symmetries]]

\begin{align*} {y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2}&=0 \end{align*}

Solution by Maple

Time used: 0.128 (sec). Leaf size: 29

dsolve(diff(y(x),x)^3-4*x*y(x)*diff(y(x),x)+8*y(x)^2=0,y(x), singsol=all)
 
\begin{align*} y &= \frac {4 x^{3}}{27} \\ y &= 0 \\ y &= \frac {\left (4 c_{1} x -1\right )^{2}}{64 c_{1}^{3}} \\ \end{align*}

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[D[y[x],x]^3-4*x*y[x]*D[y[x],x]+8*y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]
 

Timed out