74.18.2 problem 8

Internal problem ID [16480]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Chapter 4 review exercises, page 219
Problem number : 8
Date solved : Thursday, March 13, 2025 at 08:14:39 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)-diff(y(x),x)-2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_{1} {\mathrm e}^{-x}+{\mathrm e}^{2 x} c_{2} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 22
ode=D[y[x],{x,2}]-D[y[x],x]-2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-x} \left (c_2 e^{3 x}+c_1\right ) \]
Sympy. Time used: 0.153 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*y(x) - Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- x} + C_{2} e^{2 x} \]