9.8.32 problem problem 34

Internal problem ID [1097]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number : problem 34
Date solved : Monday, January 27, 2025 at 04:33:20 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} y^{\prime \prime }&=y x \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 29

Order:=6; 
dsolve(diff(y(x),x$2)=x*y(x),y(x),type='series',x=0);
 
\[ y = \left (1+\frac {x^{3}}{6}\right ) y \left (0\right )+\left (x +\frac {1}{12} x^{4}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[D[y[x],{x,2}]==x*y[x],y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {x^4}{12}+x\right )+c_1 \left (\frac {x^3}{6}+1\right ) \]