74.18.23 problem 29

Internal problem ID [16501]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Chapter 4 review exercises, page 219
Problem number : 29
Date solved : Thursday, March 13, 2025 at 08:15:28 AM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=\frac {1}{1+{\mathrm e}^{2 t}} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 40
ode:=diff(diff(y(t),t),t)-2*diff(y(t),t) = 1/(exp(2*t)+1); 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {\ln \left ({\mathrm e}^{2 t}+1\right ) \left ({\mathrm e}^{2 t}+1\right )}{4}+\frac {\left (2 c_{1} -2 \ln \left ({\mathrm e}^{t}\right )\right ) {\mathrm e}^{2 t}}{4}-\frac {t}{2}+c_{2} -\frac {1}{4} \]
Mathematica. Time used: 0.16 (sec). Leaf size: 61
ode=D[y[t],{t,2}]-2*D[y[t],t]==1/(1+Exp[2*t]); 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {1}{8} \left (\left (4 e^{2 t}+2\right ) \text {arctanh}\left (2 e^{2 t}+1\right )-4 t+\log \left (-4 e^{2 t} \left (e^{2 t}+1\right )\right )+4 c_1 e^{2 t}+8 c_2\right ) \]
Sympy. Time used: 0.840 (sec). Leaf size: 39
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-2*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - 1/(exp(2*t) + 1),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} + C_{2} e^{2 t} + \frac {e^{2 t} \log {\left (1 + e^{- 2 t} \right )}}{4} + \frac {\log {\left (1 + e^{- 2 t} \right )}}{4} \]