75.12.24 problem 298

Internal problem ID [16890]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 12. Miscellaneous problems. Exercises page 93
Problem number : 298
Date solved : Tuesday, January 28, 2025 at 09:39:51 AM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

\begin{align*} \left (x -2 y x -y^{2}\right ) y^{\prime }+y^{2}&=0 \end{align*}

Solution by Maple

Time used: 0.009 (sec). Leaf size: 19

dsolve((x-2*x*y(x)-y(x)^2)*diff(y(x),x)+y(x)^2=0,y(x), singsol=all)
 
\[ y = \frac {1}{\operatorname {RootOf}\left (-x \,\textit {\_Z}^{2}+c_{1} {\mathrm e}^{\textit {\_Z}}+1\right )} \]

Solution by Mathematica

Time used: 0.168 (sec). Leaf size: 25

DSolve[(x-2*x*y[x]-y[x]^2)*D[y[x],x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [x=y(x)^2+c_1 e^{\frac {1}{y(x)}-2} y(x)^2,y(x)\right ] \]