74.18.32 problem 38

Internal problem ID [16510]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Chapter 4 review exercises, page 219
Problem number : 38
Date solved : Thursday, March 13, 2025 at 08:15:57 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=2\\ y^{\prime }\left (0\right )&=0 \end{align*}

Maple. Time used: 0.014 (sec). Leaf size: 17
ode:=diff(diff(y(t),t),t)+5*diff(y(t),t)+6*y(t) = 0; 
ic:=y(0) = 2, D(y)(0) = 0; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = -4 \,{\mathrm e}^{-3 t}+6 \,{\mathrm e}^{-2 t} \]
Mathematica. Time used: 0.013 (sec). Leaf size: 18
ode=D[y[t],{t,2}]+5*D[y[t],t]+6*y[t]==0; 
ic={y[0]==2,Derivative[1][y][0] ==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to e^{-3 t} \left (6 e^t-4\right ) \]
Sympy. Time used: 0.185 (sec). Leaf size: 14
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(6*y(t) + 5*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 2, Subs(Derivative(y(t), t), t, 0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (6 - 4 e^{- t}\right ) e^{- 2 t} \]