74.18.35 problem 41

Internal problem ID [16513]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Chapter 4 review exercises, page 219
Problem number : 41
Date solved : Thursday, March 13, 2025 at 08:16:04 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+25 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1\\ y^{\prime }\left (0\right )&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 8
ode:=diff(diff(y(t),t),t)+25*y(t) = 0; 
ic:=y(0) = 1, D(y)(0) = 0; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = \cos \left (5 t \right ) \]
Mathematica. Time used: 0.013 (sec). Leaf size: 9
ode=D[y[t],{t,2}]+25*y[t]==0; 
ic={y[0]==1,Derivative[1][y][0] ==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \cos (5 t) \]
Sympy. Time used: 0.060 (sec). Leaf size: 7
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(25*y(t) + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \cos {\left (5 t \right )} \]