75.1.13 problem 15

Internal problem ID [16597]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 1. Basic concepts and definitions. Exercises page 18
Problem number : 15
Date solved : Thursday, March 13, 2025 at 08:25:32 AM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }+2 y&={\mathrm e}^{x} \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 18
ode:=diff(y(x),x)+2*y(x) = exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left ({\mathrm e}^{3 x}+3 c_{1} \right ) {\mathrm e}^{-2 x}}{3} \]
Mathematica. Time used: 0.04 (sec). Leaf size: 21
ode=D[y[x],x]+2*y[x]==Exp[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {e^x}{3}+c_1 e^{-2 x} \]
Sympy. Time used: 0.130 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x) - exp(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 2 x} + \frac {e^{x}}{3} \]