75.2.20 problem 40

Internal problem ID [16618]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 2. The method of isoclines. Exercises page 27
Problem number : 40
Date solved : Thursday, March 13, 2025 at 08:26:51 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=y^{2} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 11
ode:=diff(y(x),x) = y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {1}{-x +c_{1}} \]
Mathematica. Time used: 0.11 (sec). Leaf size: 18
ode=D[y[x],x]==y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {1}{x+c_1} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.125 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - \frac {1}{C_{1} + x} \]