75.6.21 problem 154

Internal problem ID [16698]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54
Problem number : 154
Date solved : Thursday, March 13, 2025 at 08:32:15 AM
CAS classification : [_linear]

\begin{align*} x y^{\prime }+y&=2 x \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 11
ode:=x*diff(y(x),x)+y(x) = 2*x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x +\frac {c_{1}}{x} \]
Mathematica. Time used: 0.024 (sec). Leaf size: 13
ode=x*D[y[x],x]+y[x]==2*x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x+\frac {c_1}{x} \]
Sympy. Time used: 0.154 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - 2*x + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x} + x \]