Internal
problem
ID
[16702]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
6.
Linear
equations
of
the
first
order.
The
Bernoulli
equation.
Exercises
page
54
Problem
number
:
158
Date
solved
:
Thursday, March 13, 2025 at 08:32:30 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=3*x*y(x)^2*diff(y(x),x)-2*y(x)^3 = x^3; dsolve(ode,y(x), singsol=all);
ode=3*x*y[x]^2*D[y[x],x]-2*y[x]^3==x^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3 + 3*x*y(x)**2*Derivative(y(x), x) - 2*y(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)