Internal
problem
ID
[16717]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
7,
Total
differential
equations.
The
integrating
factor.
Exercises
page
61
Problem
number
:
177
Date
solved
:
Friday, March 14, 2025 at 04:48:51 AM
CAS
classification
:
[_exact]
ode:=x/(x^2+y(x)^2)^(1/2)+1/x+1/y(x)+(y(x)/(x^2+y(x)^2)^(1/2)+1/y(x)-x/y(x)^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x/Sqrt[x^2+y[x]^2]+1/x+1/y[x])+(y[x]/Sqrt[x^2+y[x]^2]+1/y[x]-x/y[x]^2)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x/sqrt(x**2 + y(x)**2) + (-x/y(x)**2 + 1/y(x) + y(x)/sqrt(x**2 + y(x)**2))*Derivative(y(x), x) + 1/y(x) + 1/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out