75.19.1 problem 618

Internal problem ID [17117]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 15.4 Nonhomogeneous linear equations with constant coefficients. The Euler equations. Exercises page 143
Problem number : 618
Date solved : Tuesday, January 28, 2025 at 09:53:28 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }-y&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 15

dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(x), singsol=all)
 
\[ y = \frac {c_{2} x^{2}+c_{1}}{x} \]

Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 16

DSolve[x^2*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {c_1}{x}+c_2 x \]