75.7.21 problem 196

Internal problem ID [16735]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 7, Total differential equations. The integrating factor. Exercises page 61
Problem number : 196
Date solved : Thursday, March 13, 2025 at 08:39:40 AM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} 3 y^{2}-x +\left (2 y^{3}-6 x y\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.485 (sec). Leaf size: 101
ode:=3*y(x)^2-x+(2*y(x)^3-6*x*y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {\sqrt {-2 \sqrt {c_{1} \left (c_{1} -8 x \right )}+2 c_{1} -4 x}}{2} \\ y &= \frac {\sqrt {-2 \sqrt {c_{1} \left (c_{1} -8 x \right )}+2 c_{1} -4 x}}{2} \\ y &= -\frac {\sqrt {2 \sqrt {c_{1} \left (c_{1} -8 x \right )}+2 c_{1} -4 x}}{2} \\ y &= \frac {\sqrt {2 \sqrt {c_{1} \left (c_{1} -8 x \right )}+2 c_{1} -4 x}}{2} \\ \end{align*}
Mathematica. Time used: 0.192 (sec). Leaf size: 112
ode=( 3*y[x]^2-x)+( 2*y[x]^3-6*x*y[x] )*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^x\left (\frac {2}{y(x)^2+K[1]}-\frac {1}{K[1]-y(x)^2}\right )dK[1]+\int _1^{y(x)}\left (-\frac {2 K[2]}{K[2]^2-x}+\frac {4 K[2]}{K[2]^2+x}-\int _1^x\left (-\frac {2 K[2]}{\left (K[1]-K[2]^2\right )^2}-\frac {4 K[2]}{\left (K[2]^2+K[1]\right )^2}\right )dK[1]\right )dK[2]=c_1,y(x)\right ] \]
Sympy. Time used: 12.514 (sec). Leaf size: 160
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + (-6*x*y(x) + 2*y(x)**3)*Derivative(y(x), x) + 3*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- 2 x e^{2 C_{1}} - \sqrt {- 8 x e^{2 C_{1}} + 1} + 1} e^{- C_{1}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- 2 x e^{2 C_{1}} + \sqrt {- 8 x e^{2 C_{1}} + 1} + 1} e^{- C_{1}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- 2 x e^{2 C_{1}} + \sqrt {- 8 x e^{2 C_{1}} + 1} + 1} e^{- C_{1}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- 2 x e^{2 C_{1}} - \sqrt {- 8 x e^{2 C_{1}} + 1} + 1} e^{- C_{1}}}{2}\right ] \]