75.19.4 problem 621

Internal problem ID [17120]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 15.4 Nonhomogeneous linear equations with constant coefficients. The Euler equations. Exercises page 143
Problem number : 621
Date solved : Tuesday, January 28, 2025 at 09:53:34 AM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} x y^{\prime \prime }+y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 10

dsolve(x*diff(y(x),x$2)+diff(y(x),x)=0,y(x), singsol=all)
 
\[ y = \ln \left (x \right ) c_{2} +c_{1} \]

Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 13

DSolve[x*D[y[x],{x,2}]+D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 \log (x)+c_2 \]