75.8.14 problem 212

Internal problem ID [16751]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 8. First order not solved for the derivative. Exercises page 67
Problem number : 212
Date solved : Thursday, March 13, 2025 at 08:40:17 AM
CAS classification : [_quadrature]

\begin{align*} y&=y^{\prime } \ln \left (y^{\prime }\right ) \end{align*}

Maple. Time used: 0.086 (sec). Leaf size: 63
ode:=y(x) = diff(y(x),x)*ln(diff(y(x),x)); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \left (-1-\sqrt {1+2 x -2 c_{1}}\right ) {\mathrm e}^{-1-\sqrt {1+2 x -2 c_{1}}} \\ y &= \left (-1+\sqrt {1+2 x -2 c_{1}}\right ) {\mathrm e}^{-1+\sqrt {1+2 x -2 c_{1}}} \\ \end{align*}
Mathematica. Time used: 0.16 (sec). Leaf size: 27
ode=y[x]==D[y[x],x]*Log[D[y[x],x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {W(K[1])}{K[1]}dK[1]\&\right ][x+c_1] \]
Sympy. Time used: 0.727 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - log(Derivative(y(x), x))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ - x + \frac {y{\left (x \right )} e^{- W\left (y{\left (x \right )}\right )} W\left (y{\left (x \right )}\right )}{2} + y{\left (x \right )} e^{- W\left (y{\left (x \right )}\right )} = C_{1} \]