75.20.5 problem 640

Internal problem ID [17139]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 15.5 Linear equations with variable coefficients. The Lagrange method. Exercises page 148
Problem number : 640
Date solved : Tuesday, January 28, 2025 at 09:54:06 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+\left (\tan \left (x \right )-2 \cot \left (x \right )\right ) y^{\prime }+2 \cot \left (x \right )^{2} y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=\sin \left (x \right ) \end{align*}

Solution by Maple

Time used: 0.292 (sec). Leaf size: 13

dsolve([diff(y(x),x$2)+(tan(x)-2*cot(x))*diff(y(x),x)+2*cot(x)^2*y(x)=0,sin(x)],singsol=all)
 
\[ y = \sin \left (x \right ) \left (\sin \left (x \right ) c_{2} +c_{1} \right ) \]

Solution by Mathematica

Time used: 2.182 (sec). Leaf size: 27

DSolve[D[y[x],{x,2}]+(Tan[x]-2*Cot[x])*D[y[x],x]+2*Cot[x]^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 \sqrt {-\sin ^2(x)}-c_2 \sin ^2(x) \]