Internal
problem
ID
[743]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
1.6,
Substitution
methods
and
exact
equations.
Page
74
Problem
number
:
15
Date
solved
:
Tuesday, March 04, 2025 at 11:39:25 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=y(x)*(3*x+y(x))+x*(x+y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=y[x]*(3*x+y[x])+x*(x+y[x])*D[y[x],x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x + y(x))*Derivative(y(x), x) + (3*x + y(x))*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)