75.14.6 problem 332

Internal problem ID [16841]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 14. Differential equations admitting of depression of their order. Exercises page 107
Problem number : 332
Date solved : Thursday, March 13, 2025 at 08:53:03 AM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} x y^{\prime \prime }&=y^{\prime } \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 11
ode:=x*diff(diff(y(x),x),x) = diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_{2} x^{2}+c_{1} \]
Mathematica. Time used: 0.009 (sec). Leaf size: 17
ode=x*D[y[x],{x,2}]==D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_1 x^2}{2}+c_2 \]
Sympy. Time used: 0.115 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) - Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x^{2} \]