75.25.2 problem 758

Internal problem ID [17225]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 18.3. Finding periodic solutions of linear differential equations. Exercises page 187
Problem number : 758
Date solved : Tuesday, January 28, 2025 at 09:58:03 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\pi ^{2}-x^{2} \end{align*}

Solution by Maple

Time used: 0.005 (sec). Leaf size: 29

dsolve(diff(y(x),x$2)-4*diff(y(x),x)+4*y(x)=Pi^2-x^2,y(x), singsol=all)
 
\[ y = -\frac {3}{8}+\left (c_{1} x +c_{2} \right ) {\mathrm e}^{2 x}-\frac {x^{2}}{4}+\frac {\pi ^{2}}{4}-\frac {x}{2} \]

Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 42

DSolve[D[y[x],{x,2}]-4*D[y[x],x]+4*y[x]==Pi^2-x^2,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {1}{8} \left (-2 x^2-4 x+2 \pi ^2-3\right )+c_1 e^{2 x}+c_2 e^{2 x} x \]