75.26.7 problem 774

Internal problem ID [17235]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 3 (Systems of differential equations). Section 19. Basic concepts and definitions. Exercises page 199
Problem number : 774
Date solved : Tuesday, January 28, 2025 at 08:27:35 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=\frac {t -y \left (t \right )}{y \left (t \right )-x \left (t \right )}\\ \frac {d}{d t}y \left (t \right )&=\frac {x \left (t \right )-t}{y \left (t \right )-x \left (t \right )} \end{align*}

Solution by Maple

Time used: 3.527 (sec). Leaf size: 131

dsolve([diff(x(t),t)=(t-y(t))/(y(t)-x(t)),diff(y(t),t)=(x(t)-t)/(y(t)-x(t))],singsol=all)
 
\begin{align*} \left \{x \left (t \right ) &= t +\operatorname {RootOf}\left (-t +\int _{}^{\textit {\_Z}}-\frac {2 \left ({\mathrm e}^{c_{1}} \textit {\_f}^{2}-1\right )}{3 \,{\mathrm e}^{c_{1}} \textit {\_f}^{2}-{\mathrm e}^{\frac {c_{1}}{2}} \sqrt {-3 \,{\mathrm e}^{c_{1}} \textit {\_f}^{2}+4}\, \textit {\_f} -4}d \textit {\_f} +c_{2} \right ), x \left (t \right ) = t +\operatorname {RootOf}\left (-t +\int _{}^{\textit {\_Z}}-\frac {2 \left ({\mathrm e}^{c_{1}} \textit {\_f}^{2}-1\right )}{3 \,{\mathrm e}^{c_{1}} \textit {\_f}^{2}+{\mathrm e}^{\frac {c_{1}}{2}} \sqrt {-3 \,{\mathrm e}^{c_{1}} \textit {\_f}^{2}+4}\, \textit {\_f} -4}d \textit {\_f} +c_{2} \right )\right \} \\ \left \{y \left (t \right ) &= \frac {x \left (t \right ) \left (\frac {d}{d t}x \left (t \right )\right )+t}{\frac {d}{d t}x \left (t \right )+1}\right \} \\ \end{align*}

Solution by Mathematica

Time used: 5.742 (sec). Leaf size: 151

DSolve[{D[x[t],t]==(t-y[t])/(y[t]-x[t]),D[y[t],t]==(x[t]-t)/(y[t]-x[t])},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} x(t)\to \frac {1}{2} \left (-\sqrt {-3 t^2+2 c_1 t+c_1{}^2+4 c_2}-t+c_1\right ) \\ y(t)\to \frac {1}{2} \left (\sqrt {-3 t^2+2 c_1 t+c_1{}^2+4 c_2}-t+c_1\right ) \\ x(t)\to \frac {1}{2} \left (\sqrt {-3 t^2+2 c_1 t+c_1{}^2+4 c_2}-t+c_1\right ) \\ y(t)\to \frac {1}{2} \left (-\sqrt {-3 t^2+2 c_1 t+c_1{}^2+4 c_2}-t+c_1\right ) \\ \end{align*}