75.27.11 problem 786

Internal problem ID [17247]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 3 (Systems of differential equations). Section 20. The method of elimination. Exercises page 212
Problem number : 786
Date solved : Tuesday, January 28, 2025 at 08:27:37 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d^{2}}{d t^{2}}x \left (t \right )&=x \left (t \right )^{2}+y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=-2 x \left (t \right ) \left (\frac {d}{d t}x \left (t \right )\right )+x \left (t \right ) \end{align*}

With initial conditions

\begin{align*} x \left (0\right ) = 1\\ D\left (x \right )\left (0\right ) = 1\\ y \left (0\right ) = 0 \end{align*}

Solution by Maple

Time used: 0.044 (sec). Leaf size: 18

dsolve([diff(diff(x(t),t),t) = x(t)^2+y(t), diff(y(t),t) = -2*x(t)*diff(x(t),t)+x(t), x(0) = 1, D(x)(0) = 1, y(0) = 0], singsol=all)
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{t} \\ y \left (t \right ) &= -{\mathrm e}^{2 t}+{\mathrm e}^{t} \\ \end{align*}

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[{D[x[t],{t,2}]==x[t]^2+y[t],D[y[t],t]==-2*x[t]*D[x[t],t]+x[t]},{x[0]==1,Derivative[1][x][0 ]==1,y[0]==0},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 

Not solved