75.28.1 problem 787

Internal problem ID [17248]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 3 (Systems of differential equations). Section 21. Finding integrable combinations. Exercises page 219
Problem number : 787
Date solved : Tuesday, January 28, 2025 at 08:27:37 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=x \left (t \right )^{2}+y \left (t \right )^{2}\\ \frac {d}{d t}y \left (t \right )&=2 x \left (t \right ) y \left (t \right ) \end{align*}

Solution by Maple

Time used: 3.538 (sec). Leaf size: 65

dsolve([diff(x(t),t)=x(t)^2+y(t)^2,diff(y(t),t)=2*x(t)*y(t)],singsol=all)
 
\begin{align*} \left [\{y \left (t \right ) = 0\}, \left \{x \left (t \right ) &= \frac {1}{-t +c_{1}}\right \}\right ] \\ \left [\left \{y \left (t \right ) &= \frac {4 c_{1}}{c_{1}^{2} c_{2}^{2}+2 c_{1}^{2} c_{2} t +c_{1}^{2} t^{2}-16}\right \}, \left \{x \left (t \right ) = \frac {\frac {d}{d t}y \left (t \right )}{2 y \left (t \right )}\right \}\right ] \\ \end{align*}

Solution by Mathematica

Time used: 0.481 (sec). Leaf size: 518

DSolve[{D[x[t],t]==x[t]^2+y[t]^2,D[y[t],t]==-2*x[t]*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} x(t)\to \frac {\sqrt {3 c_1-\text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1-\frac {\text {$\#$1}^3}{3 c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},\frac {\text {$\#$1}^3}{3 c_1}\right )}{\sqrt {-\text {$\#$1}^3+3 c_1}}\&\right ]\left [-\frac {2 t}{\sqrt {3}}+c_2\right ]{}^3}}{\sqrt {3} \sqrt {\text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1-\frac {\text {$\#$1}^3}{3 c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},\frac {\text {$\#$1}^3}{3 c_1}\right )}{\sqrt {-\text {$\#$1}^3+3 c_1}}\&\right ]\left [-\frac {2 t}{\sqrt {3}}+c_2\right ]}} \\ y(t)\to \text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1-\frac {\text {$\#$1}^3}{3 c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},\frac {\text {$\#$1}^3}{3 c_1}\right )}{\sqrt {-\text {$\#$1}^3+3 c_1}}\&\right ]\left [-\frac {2 t}{\sqrt {3}}+c_2\right ] \\ x(t)\to -\frac {\sqrt {3 c_1-\text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1-\frac {\text {$\#$1}^3}{3 c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},\frac {\text {$\#$1}^3}{3 c_1}\right )}{\sqrt {-\text {$\#$1}^3+3 c_1}}\&\right ]\left [\frac {2 t}{\sqrt {3}}+c_2\right ]{}^3}}{\sqrt {3} \sqrt {\text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1-\frac {\text {$\#$1}^3}{3 c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},\frac {\text {$\#$1}^3}{3 c_1}\right )}{\sqrt {-\text {$\#$1}^3+3 c_1}}\&\right ]\left [\frac {2 t}{\sqrt {3}}+c_2\right ]}} \\ y(t)\to \text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1-\frac {\text {$\#$1}^3}{3 c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},\frac {\text {$\#$1}^3}{3 c_1}\right )}{\sqrt {-\text {$\#$1}^3+3 c_1}}\&\right ]\left [\frac {2 t}{\sqrt {3}}+c_2\right ] \\ \end{align*}