75.28.7 problem 793

Internal problem ID [17254]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 3 (Systems of differential equations). Section 21. Finding integrable combinations. Exercises page 219
Problem number : 793
Date solved : Tuesday, January 28, 2025 at 09:58:28 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=\cos \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}+\sin \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}\\ \frac {d}{d t}y \left (t \right )&=-\frac {\sin \left (2 x \left (t \right )\right ) \sin \left (2 y \left (t \right )\right )}{2} \end{align*}

With initial conditions

\begin{align*} x \left (0\right ) = 0\\ y \left (0\right ) = 0 \end{align*}

Solution by Maple

dsolve([diff(x(t),t) = cos(x(t))^2*cos(y(t))^2+sin(x(t))^2*cos(y(t))^2, diff(y(t),t) = -1/2*sin(2*x(t))*sin(2*y(t)), x(0) = 0, y(0) = 0], singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[{D[x[t],t]==Cos[x[t]]^2*Cos[y[t]]^2+Sin[x[t]]^2*Cos[y[t]]^2,D[y[t],t]==-1/2*Sin[2*x[t]]*Sin[2*y[t]]},{x[0]==0,y[0]==0},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 

{}