Internal
problem
ID
[17254]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
3
(Systems
of
differential
equations).
Section
21.
Finding
integrable
combinations.
Exercises
page
219
Problem
number
:
793
Date
solved
:
Tuesday, January 28, 2025 at 09:58:28 AM
CAS
classification
:
system_of_ODEs
With initial conditions
✗ Solution by Maple
dsolve([diff(x(t),t) = cos(x(t))^2*cos(y(t))^2+sin(x(t))^2*cos(y(t))^2, diff(y(t),t) = -1/2*sin(2*x(t))*sin(2*y(t)), x(0) = 0, y(0) = 0], singsol=all)
✗ Solution by Mathematica
Time used: 0.000 (sec). Leaf size: 0
DSolve[{D[x[t],t]==Cos[x[t]]^2*Cos[y[t]]^2+Sin[x[t]]^2*Cos[y[t]]^2,D[y[t],t]==-1/2*Sin[2*x[t]]*Sin[2*y[t]]},{x[0]==0,y[0]==0},{x[t],y[t]},t,IncludeSingularSolutions -> True]
{}