Internal
problem
ID
[754]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
1.6,
Substitution
methods
and
exact
equations.
Page
74
Problem
number
:
26
Date
solved
:
Tuesday, March 04, 2025 at 11:42:30 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Bernoulli]
ode:=y(x)^3+3*y(x)^2*diff(y(x),x) = exp(-x); dsolve(ode,y(x), singsol=all);
ode=y[x]^3+3*y[x]^2*D[y[x],x] == Exp[-x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x)**3 + 3*y(x)**2*Derivative(y(x), x) - exp(-x),0) ics = {} dsolve(ode,func=y(x),ics=ics)