75.32.2 problem 826

Internal problem ID [17279]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 3 (Systems of differential equations). Section 23.3 dAlemberts method. Exercises page 243
Problem number : 826
Date solved : Tuesday, January 28, 2025 at 09:58:49 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=6 x \left (t \right )+y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=4 x \left (t \right )+3 y \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.046 (sec). Leaf size: 34

dsolve([diff(x(t),t)=6*x(t)+y(t),diff(y(t),t)=4*x(t)+3*y(t)],singsol=all)
 
\begin{align*} x \left (t \right ) &= c_{1} {\mathrm e}^{7 t}+c_{2} {\mathrm e}^{2 t} \\ y \left (t \right ) &= c_{1} {\mathrm e}^{7 t}-4 c_{2} {\mathrm e}^{2 t} \\ \end{align*}

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 71

DSolve[{D[x[t],t]==6*x[t]+y[t],D[y[t],t]==4*x[t]+3*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} x(t)\to \frac {1}{5} e^{2 t} \left (c_1 \left (4 e^{5 t}+1\right )+c_2 \left (e^{5 t}-1\right )\right ) \\ y(t)\to \frac {1}{5} e^{2 t} \left (4 c_1 \left (e^{5 t}-1\right )+c_2 \left (e^{5 t}+4\right )\right ) \\ \end{align*}