Internal
problem
ID
[757]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
1.6,
Substitution
methods
and
exact
equations.
Page
74
Problem
number
:
29
Date
solved
:
Tuesday, March 04, 2025 at 11:42:38 AM
CAS
classification
:
[`y=_G(x,y')`]
ode:=2*x*cos(y(x))*sin(y(x))*diff(y(x),x) = 4*x^2+sin(y(x))^2; dsolve(ode,y(x), singsol=all);
ode=2*x*Cos[y[x]]*Sin[y[x]]*D[y[x],x] == 4*x^2+Sin[y[x]]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x**2 + 2*x*sin(y(x))*cos(y(x))*Derivative(y(x), x) - sin(y(x))**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)