75.16.18 problem 491

Internal problem ID [16912]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132
Problem number : 491
Date solved : Thursday, March 13, 2025 at 09:00:22 AM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y&=1 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 24
ode:=diff(diff(diff(y(x),x),x),x)+6*diff(diff(y(x),x),x)+11*diff(y(x),x)+6*y(x) = 1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {1}{6}+c_{1} {\mathrm e}^{-3 x}+c_{2} {\mathrm e}^{-2 x}+c_{3} {\mathrm e}^{-x} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 33
ode=D[y[x],{x,3}]+6*D[y[x],{x,2}]+11*D[y[x],x]+6*y[x]==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 e^{-3 x}+c_2 e^{-2 x}+c_3 e^{-x}+\frac {1}{6} \]
Sympy. Time used: 0.208 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(6*y(x) + 11*Derivative(y(x), x) + 6*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 3 x} + C_{2} e^{- 2 x} + C_{3} e^{- x} + \frac {1}{6} \]