Internal
problem
ID
[17309]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.1
(Separable
equations).
Problems
at
page
44
Problem
number
:
10
Date
solved
:
Tuesday, January 28, 2025 at 09:59:23 AM
CAS
classification
:
[_separable]
\begin{align*} y^{\prime }&=\frac {\sec \left (x \right )^{2}}{y^{3}+1} \end{align*}
Time used: 0.010 (sec). Leaf size: 17
Time used: 60.278 (sec). Leaf size: 1075
\begin{align*}
y(x)\to \frac {\sqrt {\frac {-4\ 3^{2/3} \tan (x)+\sqrt [3]{3} \left (9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}\right ){}^{2/3}-4\ 3^{2/3} c_1}{\sqrt [3]{9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}}}}}{\sqrt {6}}-\frac {1}{2} \sqrt {\frac {8 (\tan (x)+c_1)}{\sqrt [3]{3} \sqrt [3]{9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}}}-\frac {2 \sqrt [3]{9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}}}{3^{2/3}}-\frac {4 \sqrt {6}}{\sqrt {\frac {-4\ 3^{2/3} \tan (x)+\sqrt [3]{3} \left (9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}\right ){}^{2/3}-4\ 3^{2/3} c_1}{\sqrt [3]{9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}}}}}} \\
y(x)\to \frac {\sqrt {\frac {-4\ 3^{2/3} \tan (x)+\sqrt [3]{3} \left (9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}\right ){}^{2/3}-4\ 3^{2/3} c_1}{\sqrt [3]{9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}}}}}{\sqrt {6}}+\frac {1}{2} \sqrt {\frac {8 (\tan (x)+c_1)}{\sqrt [3]{3} \sqrt [3]{9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}}}-\frac {2 \sqrt [3]{9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}}}{3^{2/3}}-\frac {4 \sqrt {6}}{\sqrt {\frac {-4\ 3^{2/3} \tan (x)+\sqrt [3]{3} \left (9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}\right ){}^{2/3}-4\ 3^{2/3} c_1}{\sqrt [3]{9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}}}}}} \\
y(x)\to -\frac {\sqrt {\frac {-4\ 3^{2/3} \tan (x)+\sqrt [3]{3} \left (9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}\right ){}^{2/3}-4\ 3^{2/3} c_1}{\sqrt [3]{9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}}}}}{\sqrt {6}}-\frac {1}{2} \sqrt {\frac {8 (\tan (x)+c_1)}{\sqrt [3]{3} \sqrt [3]{9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}}}-\frac {2 \sqrt [3]{9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}}}{3^{2/3}}+\frac {4 \sqrt {6}}{\sqrt {\frac {-4\ 3^{2/3} \tan (x)+\sqrt [3]{3} \left (9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}\right ){}^{2/3}-4\ 3^{2/3} c_1}{\sqrt [3]{9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}}}}}} \\
y(x)\to \frac {1}{2} \sqrt {\frac {8 (\tan (x)+c_1)}{\sqrt [3]{3} \sqrt [3]{9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}}}-\frac {2 \sqrt [3]{9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}}}{3^{2/3}}+\frac {4 \sqrt {6}}{\sqrt {\frac {-4\ 3^{2/3} \tan (x)+\sqrt [3]{3} \left (9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}\right ){}^{2/3}-4\ 3^{2/3} c_1}{\sqrt [3]{9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}}}}}}-\frac {\sqrt {\frac {-4\ 3^{2/3} \tan (x)+\sqrt [3]{3} \left (9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}\right ){}^{2/3}-4\ 3^{2/3} c_1}{\sqrt [3]{9+\sqrt {3} \sqrt {27+64 (\tan (x)+c_1){}^3}}}}}{\sqrt {6}} \\
\end{align*}