Internal
problem
ID
[16986]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.3
Nonhomogeneous
linear
equations
with
constant
coefficients.
Superposition
principle.
Exercises
page
137
Problem
number
:
566
Date
solved
:
Thursday, March 13, 2025 at 09:05:38 AM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+2*diff(diff(diff(y(x),x),x),x)+2*diff(diff(y(x),x),x)+2*diff(y(x),x)+y(x) = x*exp(x)+1/2*cos(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]+2*D[y[x],{x,3}]+2*D[y[x],{x,2}]+2*D[y[x],x]+y[x]==x*Exp[x]+1/2*Cos[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*exp(x) + y(x) - cos(x)/2 + 2*Derivative(y(x), x) + 2*Derivative(y(x), (x, 2)) + 2*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)