10.2.22 problem 22

Internal problem ID [1150]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Section 2.2. Page 48
Problem number : 22
Date solved : Monday, January 27, 2025 at 04:36:42 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\frac {3 x^{2}}{-4+3 y^{2}} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0 \end{align*}

Solution by Maple

Time used: 0.089 (sec). Leaf size: 71

dsolve([diff(y(x),x) = 3*x^2/(-4+3*y(x)^2),y(1) = 0],y(x), singsol=all)
 
\[ y = -\frac {\left (1+i \sqrt {3}\right ) \left (-108+108 x^{3}+12 \sqrt {81 x^{6}-162 x^{3}-687}\right )^{{2}/{3}}-48 i \sqrt {3}+48}{12 \left (-108+108 x^{3}+12 \sqrt {81 x^{6}-162 x^{3}-687}\right )^{{1}/{3}}} \]

Solution by Mathematica

Time used: 9.255 (sec). Leaf size: 137

DSolve[{D[y[x],x]== 3*x^2/(-4+3*y[x]^2),y[1]==0},y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {-i \sqrt [3]{2} 3^{2/3} \left (9 x^3+\sqrt {81 x^6-162 x^3-687}-9\right )^{2/3}-\sqrt [3]{2} \sqrt [6]{3} \left (9 x^3+\sqrt {81 x^6-162 x^3-687}-9\right )^{2/3}-8 \sqrt {3}+24 i}{2\ 2^{2/3} 3^{5/6} \sqrt [3]{9 x^3+\sqrt {81 x^6-162 x^3-687}-9}} \]