76.6.5 problem 5

Internal problem ID [17460]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 3. Systems of two first order equations. Section 3.2 (Two first order linear differential equations). Problems at page 142
Problem number : 5
Date solved : Tuesday, January 28, 2025 at 10:39:03 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=3 x \left (t \right )-y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=x \left (t \right )+2 y \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.074 (sec). Leaf size: 81

dsolve([diff(x(t),t)=3*x(t)-y(t),diff(y(t),t)=x(t)+2*y(t)],singsol=all)
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{\frac {5 t}{2}} \left (\sin \left (\frac {\sqrt {3}\, t}{2}\right ) c_{1} +\cos \left (\frac {\sqrt {3}\, t}{2}\right ) c_{2} \right ) \\ y \left (t \right ) &= \frac {{\mathrm e}^{\frac {5 t}{2}} \left (\sqrt {3}\, \sin \left (\frac {\sqrt {3}\, t}{2}\right ) c_{2} -\sqrt {3}\, \cos \left (\frac {\sqrt {3}\, t}{2}\right ) c_{1} +\sin \left (\frac {\sqrt {3}\, t}{2}\right ) c_{1} +\cos \left (\frac {\sqrt {3}\, t}{2}\right ) c_{2} \right )}{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 112

DSolve[{D[x[t],t]==3*x[t]-y[t],D[y[t],t]==x[t]+2*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} x(t)\to \frac {1}{3} e^{5 t/2} \left (3 c_1 \cos \left (\frac {\sqrt {3} t}{2}\right )+\sqrt {3} (c_1-2 c_2) \sin \left (\frac {\sqrt {3} t}{2}\right )\right ) \\ y(t)\to \frac {1}{3} e^{5 t/2} \left (3 c_2 \cos \left (\frac {\sqrt {3} t}{2}\right )+\sqrt {3} (2 c_1-c_2) \sin \left (\frac {\sqrt {3} t}{2}\right )\right ) \\ \end{align*}