Internal
problem
ID
[17106]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
17.
Boundary
value
problems.
Exercises
page
163
Problem
number
:
711
Date
solved
:
Thursday, March 13, 2025 at 09:16:11 AM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)+y(x) = 0; ic:=y(0) = 0, y(1/2*Pi) = alpha; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]+y[x]==0; ic={y[0]==0,y[Pi/2]==\[Alpha]}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 0, y(pi/2): alpha} dsolve(ode,func=y(x),ics=ics)