Internal
problem
ID
[17112]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
17.
Boundary
value
problems.
Exercises
page
163
Problem
number
:
717
Date
solved
:
Thursday, March 13, 2025 at 09:16:25 AM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)+lambda^2*y(x) = 0; ic:=D(y)(0) = 0, D(y)(Pi) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]+\[Lambda]^2*y[x]==0; ic={Derivative[1][y][0] ==0,Derivative[1][y][Pi]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") cg = symbols("cg") y = Function("y") ode = Eq(cg**2*y(x) + Derivative(y(x), (x, 2)),0) ics = {Subs(Derivative(y(x), x), x, 0): 0, Subs(Derivative(y(x), x), x, pi): 0} dsolve(ode,func=y(x),ics=ics)