76.8.11 problem 11

Internal problem ID [17500]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 3. Systems of two first order equations. Section 3.4 (Complex Eigenvalues). Problems at page 177
Problem number : 11
Date solved : Tuesday, January 28, 2025 at 10:39:35 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=\frac {3 x \left (t \right )}{4}-2 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=x \left (t \right )-\frac {5 y \left (t \right )}{4} \end{align*}

Solution by Maple

Time used: 0.074 (sec). Leaf size: 45

dsolve([diff(x(t),t)=3/4*x(t)-2*y(t),diff(y(t),t)=x(t)-5/4*y(t)],singsol=all)
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{-\frac {t}{4}} \left (c_{1} \sin \left (t \right )+c_{2} \cos \left (t \right )\right ) \\ y \left (t \right ) &= \frac {{\mathrm e}^{-\frac {t}{4}} \left (c_{1} \sin \left (t \right )+c_{2} \sin \left (t \right )-\cos \left (t \right ) c_{1} +c_{2} \cos \left (t \right )\right )}{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 56

DSolve[{D[x[t],t]==3/4*x[t]-2*y[t],D[y[t],t]==x[t]-5/4*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} x(t)\to e^{-t/4} (c_1 \cos (t)+(c_1-2 c_2) \sin (t)) \\ y(t)\to e^{-t/4} (c_2 \cos (t)+(c_1-c_2) \sin (t)) \\ \end{align*}